mirror of
https://github.com/wezm/advent-of-code.git
synced 2024-09-15 11:18:29 +00:00
195 lines
5.4 KiB
Rust
195 lines
5.4 KiB
Rust
#[macro_use]
|
|
extern crate lazy_static;
|
|
extern crate regex;
|
|
|
|
use std::collections::{HashMap, HashSet};
|
|
use std::fs;
|
|
|
|
use regex::Regex;
|
|
|
|
#[derive(Debug)]
|
|
struct Coordinate {
|
|
x: u32,
|
|
y: u32,
|
|
}
|
|
|
|
impl Coordinate {
|
|
fn distance_to(&self, other: &Coordinate) -> u32 {
|
|
((other.x as i32 - self.x as i32).abs() + (other.y as i32 - self.y as i32).abs()) as u32
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
enum Claim {
|
|
Unclaimed,
|
|
Claimed { index: usize, distance: u32 },
|
|
Tied { distance: u32 },
|
|
}
|
|
|
|
struct Grid {
|
|
grid: Vec<Claim>,
|
|
width: usize,
|
|
height: usize,
|
|
}
|
|
|
|
impl Grid {
|
|
fn new(width: usize, height: usize) -> Self {
|
|
Self {
|
|
grid: vec![Claim::Unclaimed; width * height],
|
|
width,
|
|
height,
|
|
}
|
|
}
|
|
|
|
fn claim(&mut self, index: usize, coord: &Coordinate) {
|
|
// loop through the grid, calculate the distance to each point, if it's unclaimed or the
|
|
// distance is shorter then claim it.
|
|
for (current_index, claim) in self.grid.iter_mut().enumerate() {
|
|
let current_coord = index_to_coord(current_index, self.width);
|
|
let distance = coord.distance_to(¤t_coord);
|
|
|
|
match claim {
|
|
Claim::Unclaimed => *claim = Claim::Claimed { index, distance },
|
|
Claim::Claimed {
|
|
distance: claimed_distance,
|
|
..
|
|
} if *claimed_distance > distance => *claim = Claim::Claimed { index, distance },
|
|
Claim::Claimed {
|
|
distance: claimed_distance,
|
|
..
|
|
} if *claimed_distance == distance => *claim = Claim::Tied { distance },
|
|
Claim::Tied {
|
|
distance: tied_distance,
|
|
} if distance < *tied_distance => *claim = Claim::Claimed { index, distance },
|
|
_ => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn largest_claimed_area(&self) -> u32 {
|
|
let areas = self.grid.iter().fold(HashMap::new(), |mut areas, claim| {
|
|
if let Claim::Claimed { index, .. } = claim {
|
|
let area = areas.entry(index).or_insert(0u32);
|
|
*area += 1
|
|
}
|
|
|
|
areas
|
|
});
|
|
|
|
// Exclude indexes that touch the edges as they will be infinite
|
|
let mut exclude = HashSet::new();
|
|
for x in 0..self.width {
|
|
if let Claim::Claimed { index, .. } = self.grid[x] {
|
|
exclude.insert(index);
|
|
}
|
|
if let Claim::Claimed { index, .. } = self.grid[self.width * (self.height - 1) + x] {
|
|
exclude.insert(index);
|
|
}
|
|
}
|
|
for y in 1..self.height - 1 {
|
|
if let Claim::Claimed { index, .. } = self.grid[y * self.width] {
|
|
exclude.insert(index);
|
|
}
|
|
if let Claim::Claimed { index, .. } = self.grid[y * self.width + self.width - 1] {
|
|
exclude.insert(index);
|
|
}
|
|
}
|
|
|
|
*areas
|
|
.iter()
|
|
.filter_map(|(index, area)| {
|
|
if exclude.contains(index) {
|
|
None
|
|
} else {
|
|
Some(area)
|
|
}
|
|
})
|
|
.max()
|
|
.unwrap()
|
|
}
|
|
}
|
|
|
|
fn main() {
|
|
let input = fs::read_to_string("input/day6.txt").expect("input");
|
|
|
|
let coordinates = input
|
|
.lines()
|
|
.map(parse_coord)
|
|
.collect::<Option<Vec<_>>>()
|
|
.expect("error parsing input");
|
|
|
|
part1(&coordinates);
|
|
part2(&coordinates);
|
|
}
|
|
|
|
fn part1(coordinates: &[Coordinate]) {
|
|
let max = furthest_coord(coordinates);
|
|
let mut grid = Grid::new(max.x as usize, max.y as usize);
|
|
|
|
// Claim closest locations for each coord
|
|
for (index, coord) in coordinates.iter().enumerate() {
|
|
grid.claim(index, &coord);
|
|
}
|
|
|
|
// Find the one with the most claimed area
|
|
let area = grid.largest_claimed_area();
|
|
println!("Part 1 = {}", area);
|
|
}
|
|
|
|
fn part2(coordinates: &[Coordinate]) {
|
|
// For each location calculate the distance to each coordinate. If that's less than 10,000 the
|
|
// it's part of "the region", count it.
|
|
let max = furthest_coord(coordinates);
|
|
let mut count_in_region = 0;
|
|
|
|
for y in 0..max.y {
|
|
for x in 0..max.x {
|
|
let current_location = Coordinate { x, y };
|
|
// Sum distance to all the coordinates
|
|
let sum = coordinates
|
|
.iter()
|
|
.map(|coord| current_location.distance_to(coord))
|
|
.sum::<u32>();
|
|
|
|
if sum < 10000 {
|
|
count_in_region += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
println!("Part 2 = {}", count_in_region);
|
|
}
|
|
|
|
fn furthest_coord(coordinates: &[Coordinate]) -> Coordinate {
|
|
// There are no negative coords, so assume origin at 0,0
|
|
let mut max = Coordinate { x: 0, y: 0 };
|
|
for Coordinate { x, y } in coordinates {
|
|
if *x > max.x {
|
|
max.x = *x;
|
|
}
|
|
|
|
if *y > max.y {
|
|
max.y = *y;
|
|
}
|
|
}
|
|
|
|
max
|
|
}
|
|
|
|
fn parse_coord(line: &str) -> Option<Coordinate> {
|
|
lazy_static! {
|
|
static ref RE: Regex = Regex::new(r#"\A(\d+), (\d+)\z"#).unwrap();
|
|
}
|
|
let captures = RE.captures(line)?;
|
|
|
|
Some(Coordinate {
|
|
x: captures[1].parse().ok()?,
|
|
y: captures[2].parse().ok()?,
|
|
})
|
|
}
|
|
|
|
fn index_to_coord(index: usize, width: usize) -> Coordinate {
|
|
let x = (index % width) as u32;
|
|
let y = (index / width) as u32;
|
|
Coordinate { x, y }
|
|
}
|